Energy management strategy of intelligent plug-in split hybrid electric vehicle based on deep reinforcement learning with optimized path planning algorithm

Author:

Xiong Shengguang12ORCID,Zhang Yishi3,Wu Chaozhong12,Chen Zhijun1,Peng Jiankun4,Zhang Mingyang5

Affiliation:

1. Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan, China

2. School of Automotive Engineering, Wuhan University of Technology, Wuhan, China

3. School of Management, Wuhan University of Technology, Wuhan, China

4. School of Transportation, Southeast University, Nanjing, China

5. Department of Mechanical Engineering, School of Engineering, Marine Technology, Aalto University, Espoo, Finland

Abstract

Energy management is a fundamental task and challenge of plug-in split hybrid electric vehicle (PSHEV) research field because of the complicated powertrain and variable driving conditions. Motivated by the foresight of intelligent vehicle and the breakthroughs of deep reinforcement learning framework, an energy management strategy of intelligent plug-in split hybrid electric vehicle (IPSHEV) based on optimized Dijkstra’s path planning algorithm (ODA) and reinforcement learning Deep-Q-Network (DQN) is proposed to cope with the challenge. Firstly, a gray model is used to predict the traffic congestion of each road and the length of each road calculated in the traditional Dijkstra’s algorithm (DA) is modified for path planning. Secondly, on the basis of the predicted velocity of each road, the planned velocity is constrained by the vehicle dynamics to ensure the driving security. Finally, the planning information is inputted to DQN to control the working mode of IPSHEV, so as to achieve energy saving of the vehicle. The simulation results show the optimized path planning algorithm and proposed energy management strategy is feasible and effective.

Funder

National Natural Science Foundation of China

Major Scientific and Technological Innovation Project in Hubei Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3