Markov velocity predictor based on state space optimization and its applications in PHEV energy management

Author:

Wang Rong1ORCID,He Yanze2,Song Tinglun2

Affiliation:

1. Department of Vehicle Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Chery Automobile CO., Ltd, Wuhu, China

Abstract

Predictive energy management (PEM) strategy has shown great advantages in improving fuel economy for plug-in hybrid electric vehicles (PHEV). A Markov velocity predictor optimization method and its applications in PHEV energy management is studied in this paper. The initial Markov velocity predictor is constructed using complete driving cycle information and the state space of the Markov velocity predictor is then optimized for specified driving conditions using simulated annealing algorithm (SAA). The practical driving conditions are identified using a multi-feature driving condition recognition unit by using the support vector machine (SVM) method. Based on the driving conditions identified, velocities are predicted using the proposed method and optimized using dynamic programming (DP) algorithm in conjunction with the state of charge (SOC) reference and vehicle state. The energy management strategy derived is then implemented in the vehicle controllers. Comparing with the traditional rule-based energy management strategy, simulation results indicate that the PEM strategy proposed herein can reduce fuel consumption.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A predictive energy management strategy for plug-in hybrid electric vehicles using real-time traffic based reference SOC planning;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-04-07

2. A dynamic competitive velocity prediction method based on Markov state space reconstruction;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-03-26

3. Vehicle speed prediction using a convolutional neural network combined with a gated recurrent unit with attention;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-02-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3