Affiliation:
1. Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, China
Abstract
Accurate prediction of the dynamic stiffness of rubber bushings is crucial for optimizing vehicle vibration and noise performance. However, this task is highly challenging due to various influencing factors such as frequency and amplitude. Consequently, there has been limited research conducted in this area thus far. This paper presents a novel approach for predicting the dynamic stiffness of rubber bushings. The frequency and amplitude dependencies of rubber bushings were thoroughly investigated through dynamic loading tests. A comprehensive model for rubber bushings, incorporating parallel connections of elastic elements, friction elements, and higher-order fractional derivative viscous elements, was established. The model parameters were accurately identified using the GA-BP method. The results demonstrate that the proposed model exhibits a high level of precision in estimating dynamic stiffness across a frequency range of 0–200 Hz. In comparison to the conventional model, the proposed approach enables more precise computation of interior sound pressure response and enhances vehicle simulation accuracy.
Funder
National Natural Science Foundation of China
Key Research and Development Program of Hubei Province, China