Affiliation:
1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun, People’s Republic of China
Abstract
This study presents a hybrid approach to integrate the comprehensive sensitivity analysis method, support vector machine technology, modified non-dominated sorting genetic algorithm-II method and the technique for order preference by similarity to ideal solution, which have been applied to multi-objective lightweight optimization of the B-pillar structure of an automobile. First, numerical models of the static–dynamic stiffness and the crashworthiness performance of automobile are established and validated by experimental testing. Then, the comprehensive sensitivity analysis method is used to define the final optimization variables. Experimental design and support vector machine based surrogate model techniques are introduced to establish the approximate model; subsequently, the modified non-dominated sorting genetic algorithm-II algorithm is applied to the multi-objective lightweight optimization design of the B-pillar structure, and the non-dominated solution set is determined. The principal component analysis method is applied to determine the weight of each objective. Finally, the technique for order preference by similarity to ideal solution method is used to rank Pareto front from best to worst to obtain the optimal solution; furthermore, a comparison between the original model and optimized design denotes that the mass of the B-pillar being reduced by 22.55% under the other impacting indicators is well guaranteed. Therefore, the proposed hybrid approach provided promising prospects in the lightweight and crashworthiness optimization application of the B-pillar.
Funder
National Key Research and Development Project of China
Subject
Mechanical Engineering,Aerospace Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献