Thermal behavior of a double cone synchronizer with carbon friction lining – verification and validation of 2D thermo-mechanical simulations by temperature measurements

Author:

Stockinger Ulrich1ORCID,Pflaum Hermann1,Voelkel Katharina1,Stahl Karsten1

Affiliation:

1. Gear Research Center (FZG), Technical University of Munich TUM School of Engineering and Design, Garching, Germany

Abstract

Synchronizers are important machine elements in gearboxes used in cars and trucks. A continuous demand for higher power density in transmissions increases the load requirements on these components. Modern Carbon friction linings can significantly improve the performance of synchronizers, but the low thermal conductivity of these materials results in high friction surface temperatures that can both damage the friction lining and lubricant. Using double cone synchronizers can further increase the power density, but the thermal loads as well. Understanding the thermal behavior of a synchronizer is important in order to improve its performance. This paper presents a 2D thermo-mechanical FEM model to calculate the temperature distribution in a double cone synchronizer. Extensive temperature measurements verify and validate the model. Practical guidelines for measuring temperatures in synchronizers are provided. The simulated temperatures correlate well with the measurements. Several parameters that influence the maximum temperature are analyzed, such as load parameters, different simulation approaches, position of temperature sensors, sensor time delay, and the influence of material properties. Measurements in combination with simulations demonstrate that cooling during the engagements and the friction of sliding blocks influence the temperature increase during an engagement.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3