Research on dynamic characteristics and fatigue robust optimization of integrated vehicle model

Author:

Li Bobo1,Yuan Huiqun2,Zhao Tianyu2,Wang Guangding1

Affiliation:

1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China

2. College of Science, Northeastern University, Shenyang, China

Abstract

This paper investigates the dynamic characteristics and fatigue robust optimization of heavy-duty tractor. First, this paper presents a vehicle model with sub-structure method. Based on the theory of base motion, the structure dynamic characteristics are analyzed. Second, the accuracy of the method is verified by comparing the experimental results with the simulation results. Also, the dynamic response and the transfer function of vehicle are obtained using the above methods. Combined with the experimental data, the methods of random multiple frequency components and multi-axial fatigue life are adopted to analyze the fatigue damage of the heavy-duty tractor under different road conditions. Finally, the Design for Six Sigma is used to optimize the vehicle’s structure. The results show that by using the proposed method, the dynamic characteristics of the vehicle can be analyzed accurately and effectively, robustness of the vehicle can be improved, and mass of the vehicle can be reduced.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigating the influence of connecting constraint properties and modeling parameters on vehicle dynamic responses;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2021-06-04

2. Dynamic characteristics analysis for vehicle parts based on parallel optimization algorithm with CUDA;Engineering Computations;2021-04-05

3. Fatigue life prediction for automobile stabilizer bar;International Journal of Structural Integrity;2019-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3