Instantaneous optimal regenerative braking control for a permanent-magnet synchronous motor in a four-wheel-drive electric vehicle

Author:

Lu Dongbin1,Ouyang Minggao1,Gu Jing1,Li Jianqiu1

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, People’s Republic of China

Abstract

Recovering the kinetic energy of a vehicle is one inherent advantage of an electric vehicle. A permanent-magnet synchronous motor is widely adopted for the traction motor in an electric vehicle with the advantage of a high efficiency and a high torque density. The principle for electric braking control of the permanent-magnet synchronous motor under field-oriented control is studied. The efficiency model of the electric drive system, which is different from that of the internal-combustion engine drive system, can be exactly described by analytical equations. On this basis, the battery power can be expressed as a function of the angular velocity and the electromagnetic torque of the motor. By solving the partial differential equation for the battery power, the instantaneous optimal regenerative braking torque of the permanent-magnet synchronous motor is simply calculated according to the vehicle braking torque demand and the motor speed. Compared with the existing efficiency map method, the analytical technology is easily implemented. Then a four-wheel-drive electric vehicle is investigated to achieve optimal regenerative braking control. The dynamic behaviour of braking in the four-wheel-drive electric vehicle is also considered. The parallel braking pattern and the series braking pattern are investigated in order to evaluate the availability of braking energy recovery. The instantaneous optimal regeneration energy can be recovered for the series braking system, and a significant amount of energy can be recovered for the parallel braking system by adjusting the free travel of the brake pedal.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3