Abstract
Complexes formed by binding 125I- or 3H-labeled neuropeptides to one of the two binding sites of their specific antibodies allowed specific and sensitive labeling of various peptidergic neurons, which could be detected by classical autoradiographic methods. To visualize two neuronal antigens on the same material at both light and electron microscopic level, we used a new technique of double immunocytochemical labeling, combining immunoperoxidase and radioimmunocytochemistry. The main steps of the process included: (a) indirect labeling of the first antigen by its specific antibody and by a peroxidase-labeled Fab immunoglobulin fragment directed against the primary antibody; (b) direct labeling of the second antigen by a radiolabeled peptide-antibody complex; (c) revealing of the first label in the presence of peroxidase substrate; and (d) revealing of the second label by autoradiographic treatment of tissue sections. Compared with other known techniques of double immunostaining, this technique offers major advantages for combined visualization of two neuronal antigens at the electron microscopic level: (a) two neuron types can be labeled by a pre-embedding approach, allowing highly sensitive detection of neuronal antigens throughout the 50-microns thickness of vibratome sections; (b) two primary antibodies obtained in the same species can be used to label the two antigens without any risk of crossreactions between the two successive labelings; and (c) the two labels can easily be differentiated, even when they are co-localized within the same neuron structures. Application of this double immunostaining technique is illustrated by data obtained in rat hypothalamus concerning the relationships among a variety of identified neurons and the co-localization of different neuropeptides within the same neuron system.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献