Exploring the variation in associations between socioeconomic indicators and non-communicable diseases in the Tromsø Study: an algorithmic approach

Author:

Svalestuen Sigbjørn12ORCID,Sari Emre2ORCID,Langholz Petja Lyn3ORCID,Vo Chi Quynh4ORCID

Affiliation:

1. Department of Social Sciences, UiT The Arctic University of Norway, Tromsø, Norway

2. Health Services and Health Economics, NORCE Norwegian Research Centre AS, Tromsø, Norway

3. Department of Archaeology, History, Religiuos Studies and Theology, UiT The Arctic University of Norway, Tromsø, Norway and

4. Department of Community Medicine, UiT The Arctic University of Norway, Tromsø, Norway

Abstract

Aims: We contribute to the methodological literature on the assessment of health inequalities by applying an algorithmic approach to evaluate the capabilities of socioeconomic variables in predicting the prevalence of non-communicable diseases in a Norwegian health survey. Methods: We use data from the seventh survey of the population based Tromsø Study (2015–2016), including 11,074 women and 10,009 men aged 40 years and above. We apply the random forest algorithm to predict four non-communicable disease outcomes (heart attack, cancer, diabetes and stroke) based on information on a number of social root causes and health behaviours. We evaluate our results using the classification error, the mean decrease in accuracy, partial dependence statistics. Results: Results suggest that education, household income and occupation to a variable extent contribute to predicting non-communicable disease outcomes. Prediction misclassification ranges between 25.1% and 35.4% depending on the non-communicable diseases under study. Partial dependences reveal mostly expected health gradients, with some examples of complex functional relationships. Out-of-sample model validation shows that predictions translate to new data input. Conclusions: Algorithmic modelling can provide additional empirical detail and metrics for evaluating heterogeneous inequalities in morbidity. The extent to which education, income and occupation contribute to predicting binary non-communicable disease outcomes depends on both non-communicable diseases and socioeconomic indicator. Partial dependences reveal that social gradients in non-communicable disease outcomes vary in shape between combinations of non-communicable disease outcome and socioeconomic status indicator. Misclassification rates highlight the extent of variation within socioeconomic groups, suggesting that future studies may improve predictive accuracy by exploring further subpopulation heterogeneity.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3