Effects of Motor Learning on Corticospinal Tract Excitability During Motor Imagery

Author:

Takenaka Yuma1,Tomisaki Yuka2,Hirose Ittetsu3,Sugawara Kenichi1ORCID

Affiliation:

1. Division of Physical Therapy Science, Graduate Course of Health and Social Work, Kanagawa University of Human Services, Yokosuka, Japan

2. IMS Yokohama Higashi-Totsuka General Rehabilitation Hospital, Yokohama, Japan

3. Yokohama Brain and Spine Center, Yokohama, Japan

Abstract

We aimed to examine the effects of motor performance improvements produced by practice on corticospinal tract excitability during motor imagery (MI) of identical movements. Participants performed a motor task with no guidelines displayed on the monitor (performance test); the participants only imagined performing the task without performing the movement (MI test), and the participants performed the power output and then adjusted it (exercise). The output force conditions were 20, 40, and 60% of the maximum voluntary contraction, and the objective was for 21 participants to learn each output force condition. The outcome of the performance test was calculated as the difference between the actual motor output and the target. During the MI test, we applied a single transcranial magnetic stimulation during imagery, assessed the corticospinal tract excitability of the right first dorsal interosseous by motor-evoked potential (MEP) amplitude, and recorded the vividness of the MI in each trial. We evaluated performance and MI before practice (Pre-test), after 150 practice sessions (Post-test 1), and after another 150 practice sessions (Post-test 2). The MEP amplitude was significantly reduced at Post-test 2 compared to Pre-test. The vividness of the MI improved with practice. Corticospinal tract excitability during MI decreased as motor performance improved. Thus, actual motor practice was also reflected in the MI of the exercise. Performance improvement was accompanied by a decrease in redundant activity, enhancing the efficiency and appropriateness of the exercise.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3