Affiliation:
1. Bavarian Center for Applied Energy Research (ZAE Bayern), Am Hubland,
97074 Würzburg, Germany
Abstract
In architecture, the outstandingly low thermal conductivity of vacuum insulation panels (VIPs) of 4 103 W/(m K) allows to realize thin thermal insulation layers. Typical U-values are 0.2 W/(m2 K) for a 2 cm-thick VIP. On the other hand, with vacuum-insulated faç ades the relative effect of thermal bridges is much stronger than that for conventionally insulated buildings. In this work, different thermal bridges are investigated. Especially with VIPs with laminated Al foils (here the aluminum foil is 8 mm thick and laminated on both sides with plastic foils of 15 mm PET and 50 mm PE), strong thermal bridges around the perimeter of the VIPs occur. Also the mounting system can have a strong negative effect on the thermal performance of VIP-insulated walls. As our calculations show, the effect of the thermal bridge depends strongly on the thermal contact of the VIPs with the wall. Therefore, it is necessary to optimize every vacuum-insulated construction in order to make the best use of the low thermal conductivity of VIPs. As an example, we describe how VIPs were effectively integrated into a renovated gable faç ade and into a new ultra-low energy timber building.
Subject
Fluid Flow and Transfer Processes,Mechanics of Materials,General Materials Science,Building and Construction
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献