A systematic review of prediction models on arteriovenous fistula: Risk scores and machine learning approaches

Author:

Meng Lingyan1ORCID,Ho Pei12ORCID

Affiliation:

1. Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

2. Department of Cardiac, Thoracic and Vascular Surgery, National University Health System, Singapore

Abstract

Objective: Failure-to-mature and early stenosis remains the Achille’s heel of hemodialysis arteriovenous fistula (AVF) creation. The maturation and patency of an AVF can be influenced by a variety of demographic, comorbidity, and anatomical factors. This study aims to review the prediction models of AVF maturation and patency with various risk scores and machine learning models. Data sources and review methods: Literature search was performed on PubMed, Scopus, and Embase to identify eligible articles. The quality of the studies was assessed using the Prediction model Risk Of Bias ASsessment (PROBAST) Tool. The performance (discrimination and calibration) of the included studies were extracted. Results: Fourteen studies (seven studies used risk score approaches; seven studies used machine learning approaches) were included in the review. Among them, 12 studies were rated as high or unclear “risk of bias.” Six studies were rated as high concern or unclear for “applicability.” C-statistics (Model discrimination metric) was reported in five studies using risk score approach (0.70–0.886) and three utilized machine learning methods (0.80–0.85). Model calibration was reported in three studies. Failure-to-mature risk score developed by one of the studies has been externally validated in three different patient populations, however the model discrimination degraded significantly (C-statistics: 0.519–0.53). Conclusion: The performance of existing predictive models for AVF maturation/patency is underreported. They showed satisfactory performance in their own study population. However, there was high risk of bias in methodology used to build some of the models. The reviewed models also lack external validation or had reduced performance in external cohort.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3