Two-phase flow separation in axial free vortex flow

Author:

Aghaee Mohammad1,Ganjiazad Rouhollah2,Roshandel Ramin1,Ashjari Mohammad Ali2

Affiliation:

1. Department of Energy Engineering, Sharif University of Technology, Tehran, Iran

2. Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Multi-phase flows, particularly two-phase flows, are widely used in the industries, hence in order to predict flow regime, pressure drop, heat transfer, and phase change, two-phase flows should be studied more precisely. In the petroleum industry, separation of phases such as water from petroleum is done using rotational flow and vortices; thus, the evolution of the vortex in two-phase flow should be considered. One method of separation requires the flow to enter a long tube in a free vortex. Investigating this requires sufficient knowledge of free vortex flow in a tube. The present study examined the evolution of tube-constrained two-phase free vortex using computational fluid dynamics. The discretized equations were solved using the SIMPLE method. It was determined that as the liquid flows down the length of the pipe, the free vortex evolves into combined forced and free vortices. The tangential velocity of the free and forced vortices also decreases in response to viscosity. It is shown that the concentration of the second discrete phase (oil) is greatest at the center of the pipe in the core of the vortex. This concentration is at a maximum at the outlet of the pipe.

Publisher

SAGE Publications

Subject

General Physics and Astronomy,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3