Recurrent Neural Network-FitNets: Improving Early Prediction of Student Performanceby Time-Series Knowledge Distillation

Author:

Murata Ryusuke1,Okubo Fumiya1ORCID,Minematsu Tsubasa1,Taniguchi Yuta2,Shimada Atsushi1

Affiliation:

1. Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan

2. Research Institute for Information Technology, Kyushu University, Fukuoka, Japan

Abstract

This study helps improve the early prediction of student performance by RNN-FitNets, which applies knowledge distillation (KD) to the time series direction of the recurrent neural network (RNN) model. The RNN-FitNets replaces the teacher model in KD with “an RNN model with a long-term time-series in which the features during the entire course are inputted” and the student model in KD with “an RNN model with a short-term time-series in which only the features during the early stages are inputted.” As a result, the RNN model in the early stage was trained to output the same results as the more accurate RNN model in the later stages. The experiment compared RNN-FitNets with a normal RNN model on a dataset of 296 university students in total. The results showed that RNN-FitNets can improve early prediction. Moreover, the SHAP value was employed to explain the contribution of the input features to the prediction results by RNN-FitNets. It was shown that RNN-FitNets can consider the future effects of the input features from the early stages of the course.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Publisher

SAGE Publications

Subject

Computer Science Applications,Education

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3