An effective co-evolutionary quantum genetic algorithm for the no-wait flow shop scheduling problem

Author:

Deng Guanlong1,Wei Ming2,Su Qingtang1,Zhao Mei1

Affiliation:

1. School of Information and Electrical Engineering, Ludong University, Yantai, China

2. Shandong Space Electronic Technology Institute, Yantai, China

Abstract

This article proposes a competitive co-evolutionary quantum genetic algorithm for the no-wait flow shop scheduling problem with the criterion to minimize makespan, which is a renowned NP-hard combinatorial optimization problem. An innovative coding and decoding mechanism is proposed. The mechanism uses square matrix to represent the quantum individual and adapts the quantum rotation gate to update the quantum individual. In the algorithm framework, the store-with-diversity is proposed to maintain the diversity of the population. Moreover, a competitive co-evolution strategy is introduced to enhance the evolutionary pressure and accelerate the convergence. The store-with-diversity and competitive co-evolution are designed to keep a balance between exploration and exploitation. Simulations based on a benchmark set and comparisons with several existing algorithms demonstrate the effectiveness and robustness of the proposed algorithm.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3