Numerical simulation of performance and emission of marine diesel engine under different gravity conditions

Author:

Lu Xiuwei1,Geng Peng1

Affiliation:

1. Merchant Marine College, Shanghai Maritime University, Shanghai, China

Abstract

A computational fluid dynamics model of the marine diesel engine was established and validated, and the simulation studies were carried out using this model. Different gravity conditions were set in the computational fluid dynamics model to investigate their effect on marine diesel emissions and performance. By comparing the simulation results under different basic grid sizes, 1.2 mm was selected as the basic grid size of the computational fluid dynamics model. The model uses the experimental data including cylinder pressure, heat release rate, and nitrogen oxides (NO x) emissions to calibrate and validate the model. The simulation results are very close to the experimental data, and slight errors are also within the allowable range. In particular, when considering the heat transfer of the combustion chamber wall, the simulation results of the heat release rate are closer to the experimental data. The simulation results show that gravity has a slight effect on cylinder pressure and heat release rate, and has a certain degree of effect on fuel spray and atomization. The penetration length of the fuel is proportional to the gravity, and the maximum deviation of the Sauter mean diameter of the droplet is 25.74%. The spray and atomization process of fuel directly affects combustion and emissions. The maximum deviation of NO x emissions is 6.03%, which is reduced from 7.46 to 7.01 g/kW·h. Finally, the three-dimensional simulation results of temperature, equivalence ratio, and NO x emission of different crank angles under different gravity conditions are compared.

Funder

Shanghai Sailing Program

China Postdoctoral Science Foundation

Natural Science Foundation Committee of China

Project of Central Public-interest Scientific Institution Basal Research Fund

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3