Experimental study of the mechanical properties of steel fiber stainless-steel reinforced concrete (SFSRC) beams under low velocity impact conditions

Author:

Zhou Xiwu1ORCID,Zhang Wen1ORCID,Wang Xiangyu2

Affiliation:

1. School of Transportation and Civil Engineering & Architecture, Foshan University, Foshan, P.R. China

2. School of Architecture & Civil Engineering, Guangxi University, Guangxi, P.R. China

Abstract

In the present study, based on the previous impact resistance test study results regarding stainless steel reinforced concrete beams, six steel fiber stainless-steel reinforced concrete (SFSRC) beams were subjected to drop-hammer impact tests using an advanced ultra-high heavy multi-function drop hammer impact test system. The goal was to further investigate the mechanical properties of SFSRC beams under impact load conditions. The influencing effects of the steel fiber content and impact velocity levels on the impact resistance mechanical properties of SFSRC beams were analyzed. A digital image correlation method (DIC) was used to analyze the full-field strain and displacement values of the specimens. The results revealed that the steel fibers had significantly enhanced the overall energy dissipation and crack resistance capacities of the specimens, and also improved the brittleness of the stainless steel reinforced concrete beams. In addition, the addition of steel fibers effectively inhibited the local damages of the beam-hammer contact areas. In this study’s experiments, the impact resistance of the beams was observed to be the highest when the fiber content was 2.0%. The internal force formula of the local response stage of the beams showed that the shearing effects had significant impacts on the overall failure modes of the specimens. It was found that with the increases in impact velocity, the failure mode of the SFSRC beams transitioned from bending failure to shear failure, and then to a punching shear failure mode. The DIC results indicated that the addition of steel fiber improved the bonding performances between the concrete matrixes, along with inhibiting the crack development rates through the bond force between the fiber and the concrete.

Funder

department of education of guangdong province

the Science and Technology Innovation Project of Department of Education of Guangdong Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3