Analytical method comparison on critical force of the stepped column model of telescopic crane

Author:

Yao Fenglin1ORCID,Meng Wenjun1,Zhao Jie2,She Zhanjiao1,Shi Guoshan1

Affiliation:

1. School of Mechanical Engineering, Taiyuan University of Science and Technology, Taiyuan, P.R. China

2. Department of Computer Engineering, Taiyuan University of Technology,Taiyuan, P.R. China

Abstract

The calculation of the critical force of the stepped column model of telescopic boom crane is the key to stability calculation of all-terrain crane. In slightly bending theory, differential equation can be built up, and then the deflection curve of ideal column can be obtained. Using this curve and the Rayleigh–Ritz method, the Euler force of the ideal column can be obtained. For n-stepped columns, Euler forces and the effective length coefficients can be acquired using the deflection curve of the ideal column and parabolic curve, respectively, combined with the Rayleigh–Ritz method. Differential equations of the n-stepped telescopic boom are established based on the vertical and horizontal buckling theory. The recursive formula of the stability of the n-stepped telescopic boom is deduced by the mathematical induction method. For the transcendental equation in the recursive formula, combined with the structural force characteristics and supplementary formulas, the Levenberg–Marquardt numerical optimization algorithm is used to solve the equations with n unknowns. Length coefficients obtained by the three methods are compared using GB3811-2008 and ANSYS 17.0. The results show that the accuracy of the numerical algorithm is the highest, and the first two algorithms will produce large errors when the stepped columns have more steps.

Funder

the Fund for Shanxi “1331 Project” Key Subjects Construction

Postdoctoral Foundation in Taiyuan University of Science and Technology

PhD Foundation in Taiyuan University of Science and technology

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference15 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3