Robot grasp detection using multimodal deep convolutional neural networks

Author:

Wang Zhichao1,Li Zhiqi1,Wang Bin1,Liu Hong1

Affiliation:

1. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China

Abstract

Autonomous manipulation has enabled a wide range of exciting robot tasks. However, perceiving outside environment is still a challenging problem in the field of intelligent robotic research due to the lack of object models, unstructured environments, and time-consuming computation. In this article, we present a novel robot grasp detection system that maps a pair of RGB-D images of novel objects to best grasping pose of a robotic gripper. First, we segment the graspable objects from the unstructured scene using the geometrical features of both the object and the robotic gripper. Then, a deep convolutional neural network is applied on these graspable objects, which aims to find the best graspable area for each object. In order to improve the efficiency in the detection system, we introduce a structured penalty term to optimize the connections between multimodality, which significantly mitigates complexity of the network and outperforms fully connected multimodal processing. We also present a two-stage closed-loop grasping candidate estimator to accelerate the searching efficiency of grasping-candidate generation. Moreover, the combination of a two-stage estimator with the grasping detection network naturally improves detection accuracy. Experiments have been conducted to validate the proposed methods. The results show that our method outperforms the state of the art and runs at real-time speed.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3