Design and mechanical behavior study of ultrahigh-torque variable pitch casing joint

Author:

Dong Liangliang12,Wang Jing12,Zhu Xiaohua12

Affiliation:

1. Key Laboratory of Oil & Gas Equipment, Ministry of Education, Southwest Petroleum University, Chengdu, China

2. School of Mechanical Engineering, Southwest Petroleum University, Chengdu, China

Abstract

The top drive for casing running system can effectively avoid borehole neck down and sticking, reducing construction period by about 50%. However, the casing will bear higher torque load, and the casing joint threads can meet the bearing performance, which have a critical impact on casing running and the life of oil and gas wells. Variable pitch can reduce thread stress concentration and improve load-bearing strength. Lacking research on mechanical behavior has greatly restricted the development of variable pitch thread. This article generated a variable pitch casing joint thread helix forming method and control equation; designed an ultrahigh-torque variable pitch casing joint thread based on the theory of screw transformation matrix; established a three-dimensional finite element model of the variable pitch casing joint; optimized the main structure parameters with the judgment of torque-bearing capacity; and conducted parameter-sensitivity evaluation of guide surface angle, bearing surface angle, pitch of box thread, and amount of varying pitch under tension load, compression load, bending load, and torque load. The designed variable pitch casing joint had been successfully used in several top driving casing running wells, downed to the maximum depth of 4375 m, the largest hole deviation angle of 55.37° and horizontal section length of about 260 m. Under a torque of 4000 N m, the top drive rotated down into the gas well successfully without failure. The research work of this article has significance on variable pitch thread and enhances the bearing capacity of the thread.

Funder

Southwest Petroleum University

National Natural Science Foundation of China

Education Department of Sichuan Province

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3