Layout design optimization of dynamic environment flexible manufacturing systems

Author:

Qudeiri Jaber Abu1,Umer Usama1,Khadra Fayiz Abu2,Hussein HMA13,Al-Ahmari Abdulrahman4,Darwish Saied4,Abidi MH1

Affiliation:

1. FARCAMT, Advanced Manufacturing Institute, King Saud University, Riyadh, Saudi Arabia

2. Mechanical Engineering Department, King Abdulaziz University, Rabigh, Saudi Arabia

3. Department of Mechanical Engineering, Helwan University, Cairo, Egypt

4. Industrial Engineering Department, King Saud University, Riyadh, Saudi Arabia

Abstract

The proper positioning of machine tools in flexible manufacturing system is one of the factors that lead to increase in production efficiency. Choosing the optimum position of machine tools curtails the total part handling cost between machine tools within the flexible manufacturing system. In this article, a two-stage approach is presented to investigate the best locations of the machine tools in flexible manufacturing system. The location of each machine tool is selected from the available specific and fixed locations in such a way that it will result in best throughput of the flexible manufacturing system. In the first stage of the two-stage approach, the throughput of randomly selected locations of the machine tool in flexible manufacturing system is computed by proposing a production simulation system. The production simulation system utilizes genetic algorithms to find the locations of the machine tools in flexible manufacturing system that achieve the maximum throughput of the flexible manufacturing system. In the second stage, the generated locations are fed into artificial neural network to find a relation between a machine tool’s location and the throughput that can be used to predict the throughput for any other set of locations. Artificial neural network will result in mitigating the computational time.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3