Energy saving control based on motor efficiency map for electric vehicleswith four-wheel independently driven in-wheel motors

Author:

Gang Li1ORCID,Zhi Yang1

Affiliation:

1. Automobile & Transportation Engineering College, Liaoning University of Technology, Jinzhou, China

Abstract

For four-wheel independently driven in-wheel motor electric vehicles, the four-wheel drive/braking torque can be controlled independently. Therefore, it has an advantage that energy saving control can be applied effectively. This article studies several energy saving control methods from two levels of driving and braking for four-wheel independently driven in-wheel motor electric vehicles under urban conditions based on the motor efficiency map. First, the energy saving control logic and the evaluation index were proposed in the article. The four-wheel drive torque was online optimized in real time through drive energy saving control, in order to improve the driving efficiency in the driving process of electric vehicles. According to the theory of ideal braking force distribution and Economic Commission of Europe braking regulations, the parallel regenerative braking control method based on the motor efficiency map was then studied. The parallel regenerative braking control method was applied to four-wheel independently driven in-wheel motor electric vehicles. The simulation analysis under typical urban driving cycle conditions was carried out to determine the braking intensity of the parallel brake front axle separate regenerative braking, and finally the braking energy recovery rate of electric vehicle can be improved in the low speed and low braking torque. Finally, simulation experiments have been carried out to verify the researched method under the NEDC, UDDS, and J1015 urban driving cycles. The simulation results show that the energy saving control methods have an obvious effect on energy saving under the urban driving cycle conditions.

Funder

Project of Liaoning Province Innovative Talents

Project of Liaoning Province major science and technology platform

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3