Nonlinear vibration and control of maglev vehicle-switch beam coupling system

Author:

Li Zhongji1,Dong Hao2ORCID,Chen Zhixian1,Lin Hongsong1,Yang Jizhong1

Affiliation:

1. Rail Transit Technology Research Center, China Railway Eryuan Engineering Group Co. Ltd, Chengdu, Sichuan, China

2. Chengdu University, Chengdu, Sichuan, China

Abstract

The electro-magnetic suspension (EMS)-based Maglev train, referred as one of the new transport mode, the two important issues are the loss of stability and the nonlinear coupled vibration because of it including suspension controller and control command. In this study, a Maglev train-controller coupled dynamic model is developed to investigate the stability of suspension controller and the coupling vibration, wherein, the tuned mass damper (TMD) control method is applied to avoid Hopf bifurcation phenomenon of the train-switch vibration. The eigenvalue and time integration methods are used to analysis the instability domain. The results demonstrate the proposed dynamic model is able to represent the loss of stability of the coupled vibration, which is comparable to those obtained via the experiments. Using this dynamic model, the dynamic performance and characteristic of the vehicle/switch coupled vibration is investigated, which further contributes to the TMD-based vibration control method for the vibration of the switch beam and the stability of the coupling system.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Educational Scientific Research Plan of Chengdu Bureau of Education

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3