Application of artificial neural networks for quantitative damage detection in unidirectional composite structures based on Lamb waves

Author:

Qian Cheng1,Ran Yunmeng2ORCID,He Jingjing1,Ren Yi1,Sun Bo1,Zhang Weifang1,Wang Rongqiao2

Affiliation:

1. School of Reliability and Systems Engineering, Beihang University, Beijing, P.R. China

2. School of Energy and Power Engineering, Beihang University, Beijing, P.R. China

Abstract

This article provides a quantitative nondestructive damage detection method through a Lamb wave technique assisted by an artificial neural network model for fiber-reinforced composite structures. For simulating damages with a variety of sizes, rectangular Teflon tapes with different lengths and widths are applied on a unidirectional carbon fiber–reinforced polymer composite plate. Two characteristic parameters, amplitude damage index and phase damage index, are defined to evaluate effects by the shape of the rectangular damage in the carbon fiber–reinforced polymer composite plate. The relationships between the amplitude damage index and phase damage index parameters and the damage sizes in the carbon fiber–reinforced polymer composite plate are quantitatively addressed using a three-layer artificial neural network model. It can be seen that a reasonable agreement is achieved between the pre-assigned damage lengths and widths and the corresponding predictions provided by the artificial neural network model. This shows the great potential of using the proposed artificial neural network model for quantitatively detecting the damage size in fiber-reinforced composite structures.

Funder

fundamental research funds for the central universities

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3