A novel nanoscratch device compatible with commercial microscope for in situ tests of materials’ mechanics

Author:

Li Ning1,Zhao Hongwei1,Zhang Peng1,Shi Yue1,Liu Yanchao1,Jin Mingjun1,Wang Hui1,Dong Shan2

Affiliation:

1. School of Mechanical Science and Engineering, Jilin University, Changchun, China

2. School of Automotive Engineering, Jilin University, Changchun, China

Abstract

For exploring the mechanical properties and behaviors of new materials, a novel in situ nanoscratch device compatible with commercial microscope has been developed. The developed device with specific dimensions of 178 mm × 165 mm × 78 mm includes the coarse positioning module, the precise feed module, the measurement module, and the control module. Integrating the servo motor, worm and gears, ball screw, flexure hinge, and piezoelectric actuator, the device can realize macroscopical coarse positioning motion and precise feed motion. A novel arrangement of load sensor and indenter with no middle chain is used to reduce the measurement error. Closed-loop control system is established to guarantee the accuracy of load and displacement control. Mechanical properties of the developed device have been proved by calibrating the load sensor, finite element analysis of flexure hinge, and verifying the output performance. The in situ nanoscratch test has been conducted on the single crystal copper. The captured images and finite element analysis prove the feasibility and accuracy of the developed device.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3