An ultrasonic-assisted soft abrasive flow processing method for mold structured surfaces

Author:

Li Jun1ORCID,Zhu Fangming1,Yu Junyang2

Affiliation:

1. School of Information Science and Engineering, Hangzhou Normal University, Hangzhou, China

2. Zhejiang Entry-Exit Inspection and Quarantine Bureau, Hangzhou, China

Abstract

As a fluid-based precise processing method, soft abrasive flow processing has been widely used in advanced electromechanical systems, complex mold manufacturing, and other engineering fields. Because of the low volume fraction of abrasive particles and micro-force/cutting removal characteristics, there exists a potential improvement in terms of processing efficiency and uniformity. In view of the above problems, this article presents an ultrasonic-assisted soft abrasive flow processing method. Based on the realizable k–ε turbulence model and the mixture flow model, an ultrasonic coupling enhancement dynamic model for soft abrasive flow is set up, and the kinetic energy transport equation of realizable k–ε turbulence model can be revised. Using particle image velocimetry technology, an on-line observation experimental platform for ultrasonic-assisted soft abrasive flow is developed to conduct the real-time acquisition of abrasive flow state and particle distribution in a constrained flow passage. An ultrasonic-assisted soft abrasive flow processing experimental platform is established to complete the processing experiment. The experimental results show that the ultrasonic excitation vibration can effectively enhance the turbulence intensity and distribution uniformity of the abrasive flow, the average processing time can be shortened by more than 6 h, and a better surface quality can be obtained.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3