A novel large-scale task processing approach for big data across multi-domain

Author:

Wu Chunyi12,Xu Gaochao1,Zhao Jia2ORCID,Ding Yan2ORCID

Affiliation:

1. College of Computer Science and Technology, Jilin University, Changchun, China

2. Zhuhai Laboratory of Key Laboratory of Symbol Computation and Knowledge Engineering of Ministry of Education, College of Computer, Zhuhai College of Jilin University, Zhuhai, China

Abstract

Large-scale task processing for big data based on cloud computing has become a research hotspot nowadays. Many traditional task processing approaches in single domain based on cloud computing have been presented successively. Unfortunately, it is limited to some extent due to the type, price, and storage location of substrate resource. Based on this argument, a large-scale task processing approach for big data in multi-domain has been proposed in this work. While the serious problem of overheads in computation and data transmission still exists in task processing across multi-domain, to overcome this problem, a virtual network mapping algorithm based on multi-objective particle swarm optimization in multi-domain is proposed. Based on Pareto dominance theory, a fast non-dominated selection method for the optimal virtual network mapping scheme set is presented and crowding degree comparison method is employed for the final optimal mapping scheme, which contributes to the load balancing and minimization of bandwidth resource cost in data transmission. Cauchy mutation is introduced to accelerate convergence of the algorithm. Eventually, the large-scale tasks are processed efficiently. Experimental results show that the proposed approach can effectively reduce the additional consumption of computing and bandwidth resources, and greatly decrease the task processing time.

Funder

Jilin Provincial Education Office

Jilin Provincial Industrial Innovation Special Foundation Project

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3