A feasibility study of implementation of oxy-fuel combustion on a practical diesel engine at the economical oxygen-fuel ratios by computer simulation

Author:

Li Xiang1ORCID,Peng Zhijun1,Ajmal Tahmina1,Aitouche Abdel23ORCID,Mobasheri Raouf23ORCID,Pei Yiqiang4,Gao Bo5,Wellers Matthias6

Affiliation:

1. School of Computer Science and Technology, University of Bedfordshire, Luton, UK

2. Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, F-59000 Lille, France

3. Junia, Smart Systems and Energies, F-59000 Lille, France

4. State Key Laboratory of Engines, Tianjin University, Tianjin, China

5. Syselek Ltd, London, UK

6. AVL UK Limited, Worcestershire, UK

Abstract

To help achieve zero carbon emissions from inland waterway vessels, this implementation of oxy-fuel combustion on a practical diesel engine at the economical oxygen-fuel ratios were systematically studied and analysed in this paper. A 1-D simulation was used to explore the effect of various operating parameters for recovering the engine power when the engine is modified to the oxy-fuel combustion from conventional air combustion. The brake power of oxy-fuel combustion is only 26.7 kW that has a noticeable decline compared with 40 kW of conventional air combustion with fixed consumption of fuel and oxygen. By optimising some valuable parameters, like fuel injection timing, intake charge temperature, intake components, engine compression ratio and water injection strategy, a benefit of 6.8 kW has been acquired in the engine power. Afterwards, a remarkable benefit was obtained with the increase of lambdaO2 from 1.0 to 1.5, finally obtaining the same engine power with the conventional air combustion. Above all, taking advantage of various operating parameters, it is expected to further improve the value of the implement of oxy-fuel combustion on diesel engines at the economical oxygen-fuel ratios.

Funder

Interreg North-West Europe

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3