Geometric analysis of the influence of perpendicularity of a spindle axis of the milling machine on the surface quality

Author:

Bloul Benattia1,Bourdim Abdelghafour2,Hamou Said3,Bourdim Mokhtar2

Affiliation:

1. Laboratory of RPEM, University of Boumerdes, Boumerdes, Algeria

2. Laboratory of EOLE, Faculty of Technology, University of Tlemcen, Tlemcen, Algeria

3. Laboratory of ISMM, Faculty of Technology, University of Tlemcen, Tlemcen, Algeria

Abstract

This paper deals with analyzes of the influence of the perpendicularity of the spindle of the milling machine on the machined surface. This is part of the geometric errors of machine tools and in a direct manner constitutes a defect on the quality of the workpiece. Therefore, the surface roughness is particularly sensitive to the cutting speed, the feed rate, round of teeth default, the tool tip radius and the cutter teeth number. This article examines the characteristics of the surface topography of steel parts, in finishing machining using milling cutters. The study is conducted by computer simulation tests and experimental part using surface condition monitoring instruments, taking into consideration the round teeth default. The variation of the inclination of the spindle of the milling machine in three positions (90° + 30′, 90°, and 90°–30′) shows a good agreement between the simulation and the experimental results for sharp and moderately worn tools. Similarly, this study showed that the presented model could thus be integrated into systems computer-aided design and computer-aided manufacturing. Finally, the physical and statistical parameters of roughness during milling at position 90° confirmed that, when the defect of the perpendicularity is eliminated to the maximum, the best surface conditions are obtained.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3