Electrical conductivity and mechanical properties of conductive cotton fabrics

Author:

Attia RM1,Yousif NM2ORCID,Zohdy MH1

Affiliation:

1. Radiation Chemistry Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt

2. Solid-State and Accelerators Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt

Abstract

Functional electrically conductive fabric with acceptable mechanical properties, which could be applied in electromagnetic shielding, was developed. Conductive cotton fabrics (cotton/PANI, cotton/Mn, cotton/Cu, and cotton/Co) were prepared by in situ chemical oxidative polymerization for (cotton/PANI) and pad dry curing method was used for nanometals application. The Nano size of the metals and polyaniline inclusion were proven through both Dynamic Liquid Scattering (DLS) and X-ray diffraction (XRD) which showed an increase in crystallite density in unit space and the nanoparticles ranged from 100–200 nm. The effect of gamma irradiation on different treated cotton fabrics was investigated. The mechanical properties against irradiation dose showed an improvement up to 40 kGy, for all treated fabrics. On the other hand, Young’s modulus for untreated cotton recorded the lowest value, while cotton/Co recorded the highest one. Moreover, both AC (Alternating Current) and DC (Direct current) conductivities values can be calculated. In DC conductivity cotton/PANI was found to be more conducive than the remainder of the treated fabric by surface metallization with transition metals; while in AC conductivity cotton/Mn was found to be more conducive than the rest of the treated samples. The conductivity value increases by increasing the gamma irradiation dose for cotton/PANI fabric. Also, g-factor values can be estimated from ESR signals and vary from 0.009 up to 0.059 for conductive cotton fabrics; whilst cotton/Mn fabric has six hyperfine splittings, indicating that it is a paramagnetic element.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3