Influence of wear of carbon nanotube grown on carbon surfaces on the mechanical and electrical properties of composite materials

Author:

Guignier Claire1,Bueno Marie-Ange1

Affiliation:

1. Laboratoire de Physique et Mécanique Textiles (EA 4365), University of Haute Alsace, Mulhouse, France

Abstract

Carbon nanotubes grafted on carbon fibres are used to reinforce composite materials and improve their mechanical properties. The growth of the carbon nanotubes can be directly realized on the surface to obtain entangled carbon nanotubes, and the use of such reinforcements leads to increases in the mechanical properties of the composites. However, in an industrial-scale manufacturing process, different strains will be applied on the carbon nanotubes, such as friction stresses, causing the formation of a transfer film, which is always composed of carbon nanotubes without structural modification. In this study, the properties of composite materials formed by the growth of carbon nanotubes on carbon fibre reinforcement are determined in two different states of the carbon nanotubes: before the wear of the surface (carbon nanotubes entangled on the surface) and after the wear of the surface (carbon nanotubes in a transfer film state). The influence of the state of the carbon nanotubes on the electrical and mechanical properties of the composite materials is studied. No modification of the electrical and mechanical properties is observed, which means that an industrial-scale process that induces the formation of the transfer film does not modify the properties of the composite materials.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3