Studies on the influence of process parameters on the protection performance of the outer layer of fire-protective clothing

Author:

Rathour Rochak1ORCID,Das Apurba1,Alagirusamy Ramasamy1

Affiliation:

1. Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi, India

Abstract

During an operation, the turnout gear for firefighters must meet two important requirements: thermal protection and comfort. As comfort and protection are inherently incompatible, it is impossible to satisfy both. As part of this study, the outer layer of multilayered turnout suits was analyzed under the influence of various factors such as intensity of heat flux, pick density, and air space between the fabric and the sensor. Choosing Nomex IIIA was based on its inherent properties that are conductive to thermal protection. To simulate the environment encountered during firefighting, benchtop experiments were designed. A system equation for the prediction of the protection time (t-protection) was developed based on a three-factor and three-level Box–Behnken model. The predicted values of t-protection obtained for all the experimental blocks in the design space were subjected to ANOVA analysis which showed that the system equation, as well as the coefficients of linear interactive and square terms, is significant, so the system equation can be efficiently used for predicting t-protection. The validity of the system equation was verified by using the same experimental blocks and estimating t-protection using the Stoll criteria. The accuracy of the system equation was checked by comparing t-protection and t*-protection which revealed a linear relationship with a high correlation coefficient (R2 = 0.975). To analyze the effects of the independent variables on protection time, 3D surface response curves were created. The nature of the surfaces was critically analyzed by developing regression equations for the contours and the diagonals.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3