Thermo-mechanical behavior of 3D multi-directional braided composites based on a two-scale method

Author:

Dong Jiwei1ORCID,Luo Ning1,Kuai Chengyu1,Zuo Hong1,Wang Meng1

Affiliation:

1. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China

Abstract

Two-scale modeling is adopted to investigate the thermo-mechanical behavior of 3D four-directional (3D4D), 3D five-directional (3D5D), and 3D full five-directional (3DF5D) braided composites. Based on the stress-strain relationship considering thermal expansion and the periodic boundary conditions, the elastic constants and the coefficients of thermal expansion (CTE) of the three types of braided composites are predicted by a two-scale homogenization method. The micro stress under free expansion and thermo-mechanical coupling is also simulated. The calculated results are in good agreement with experimental results from relevant references. The numerical results show that the longitudinal elastic and thermal expansion properties are gradually improved with the increase of axial yarn content from 3D4D to 3D5D and then to 3DF5D braided composites. The braiding angle corresponding to the zero longitudinal CTE of each braided structure is basically about 40°. Furthermore, with the increase of temperature, the longitudinal micro-stress in yarns increases gradually, but that in matrix drops. These conclusions will provide a reliable basis for the structural optimization design and safety evaluation of 3D multi-directional braided composites in a thermal environment.

Funder

the Fundamental Research Funds for the Central Universities

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3