Metabolomics predicts the pharmacological profile of new psychoactive substances

Author:

Olesti Eulàlia12ORCID,De Toma Ilario23,Ramaekers Johannes G4,Brunt Tibor M56,Carbó Marcel·lí278,Fernández-Avilés Cristina1,Robledo Patricia12,Farré Magí89,Dierssen Mara123910,Pozo Óscar J1,de la Torre Rafael12910

Affiliation:

1. Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain

2. Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain

3. Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain

4. Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands

5. Amsterdam Institute for Addiction Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

6. Department of Drug Monitoring & Policy, Netherlands Institute of Mental Health and Addiction (Trimbos Institute), Utrecht, The Netherlands

7. Biomedical Research, Prous Institute, Barcelona, Spain

8. Department of Pharmacology, Toxicology and Therapeutic Chemistry. Faculty of Pharmacy and Food Sciences, University of Barcelona. Av. Joan XXIII 27-31, Barcelona, Spain

9. School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain

10. CIBER de Fisiopatología de la Obesidad y Nutrición (CB06/03), CIBEROBN, Madrid, Spain

Abstract

Background: The unprecedented proliferation of new psychoactive substances (NPS) threatens public health and challenges drug policy. Information on NPS pharmacology and toxicity is, in most cases, unavailable or very limited and, given the large number of new compounds released on the market each year, their timely evaluation by current standards is certainly challenging. Aims: We present here a metabolomics-targeted approach to predict the pharmacological profile of NPS. Methods: We have created a machine learning algorithm employing the quantification of monoamine neurotransmitters and steroid hormones in rats to predict the similarity of new drugs to classical ones of abuse (MDMA (3,4-methyl enedioxy methamphetamine), methamphetamine, cocaine, heroin and Δ9-tetrahydrocannabinol). Results: We have characterized each classical drug of abuse and two examples of NPS (mephedrone and JWH-018) following alterations observed in the targeted metabolome profile (monoamine neurotransmitters and steroid hormones) in different brain areas, plasma and urine at 1 h and 4 h post drug/vehicle administration. As proof of concept, our model successfully predicted the pharmacological profile of a synthetic cannabinoid (JWH-018) as a cannabinoid-like drug and synthetic cathinone (mephedrone) as a MDMA-like psychostimulant. Conclusion: Our approach allows a fast NPS pharmacological classification which will benefit both drug risk evaluation policies and public health.

Funder

Agència de Gestió d’Ajuts Universitaris i de Recerca

Impulse post-doctoral Marie Curie

Directorate-General for Justice

Severo Ochoa

Spanish Health National System

Red de Trastornos Adictivos

Publisher

SAGE Publications

Subject

Pharmacology (medical),Psychiatry and Mental health,Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3