Optimizing the predictive power of depression screenings using machine learning

Author:

Terhorst Yannik1ORCID,Sander Lasse B2,Ebert David D3,Baumeister Harald1

Affiliation:

1. Department of Clinical Psychology and Psychotherapy, Institute of Psychology and Education, University Ulm, Ulm, Germany

2. Medical Psychology and Medical Sociology, Faculty of Medicine, University of Freiburg, Freiburg, Germany

3. Department for Sport and Health Sciences, Chair for Psychology & Digital Mental Health Care, Technical University of Munich, Munich, Germany

Abstract

ObjectiveMental health self-report and clinician-rating scales with diagnoses defined by sum-score cut-offs are often used for depression screening. This study investigates whether machine learning (ML) can detect major depressive episodes (MDE) based on screening scales with higher accuracy than best-practice clinical sum-score approaches.MethodsPrimary data was obtained from two RCTs on the treatment of depression. Ground truth were DSM 5 MDE diagnoses based on structured clinical interviews (SCID) and PHQ-9 self-report, clinician-rated QIDS-16, and HAM-D-17 were predictors. ML models were trained using 10-fold cross-validation. Performance was compared against best-practice sum-score cut-offs. Primary outcome was the Area Under the Curve (AUC) of the Receiver Operating Characteristic curve. DeLong's test with bootstrapping was used to test for differences in AUC. Secondary outcomes were balanced accuracy, precision, recall, F1-score, and number needed to diagnose (NND).ResultsA total of k = 1030 diagnoses (no diagnosis: k = 775; MDE: k = 255) were included. ML models achieved an AUCQIDS-16= 0.94, AUCHAM-D-17= 0.88, and AUCPHQ-9= 0.83 in the testing set. ML AUC was significantly higher than sum-score cut-offs for QIDS-16 and PHQ-9 ( ps ≤ 0.01; HAM_D-17: p = 0.847). Applying optimal prediction thresholds, QIDS-16 classifier achieved clinically relevant improvements (Δbalanced accuracy = 8%, ΔF1-score = 14%, ΔNND = 21%). Differences for PHQ_9 and HAM-D-17 were marginal.ConclusionsML augmented depression screenings could potentially make a major contribution to improving MDE diagnosis depending on questionnaire (e.g., QIDS-16). Confirmatory studies are needed before ML enhanced screening can be implemented into routine care practice.

Funder

The present study was self-funded by the authors. The included RCTs providing the primary data were funded by the German Federal Ministry of Education and Research

Publisher

SAGE Publications

Subject

Health Information Management,Computer Science Applications,Health Informatics,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3