Small-Molecule Library Subset Screening as an Aid for Accelerating Lead Identification

Author:

Beresini Maureen H.1,Liu Yichin1,Dawes Timothy D.1,Clark Kevin R.1,Orren Linda1,Schmidt Stephen1,Turincio Rebecca1,Jones Steven W.1,Rodriguez Richard A.1,Thana Peter1,Hascall Daniel1,Gross Daniel P.1,Skelton Nicholas J.2

Affiliation:

1. Department of Biochemical & Cellular Pharmacology, Genentech Inc, South San Francisco, CA, USA

2. Department of Discovery Chemistry, Genentech Inc, South San Francisco, CA, USA

Abstract

Several small-compound library subsets (14,000 to 56,000) have been established to complement screening of a larger Genentech corporate library (~1,300,000). Two validation sets (~1% of the total library) containing compounds representative of the main library were chosen by selection of plates or individual compounds. Use of these subsets guided selection of assay configuration, validated assay reproducibility, and provided estimates of hit rates expected from our full library. A larger diversity subset representing the scaffold diversity of the full library (3.4% of the total) was designed for screening more challenging targets with limited reagent availability or low-throughput assays. Retrospective analysis of this subset showed hit rates similar to those of the main library while recovering a higher proportion of hit scaffolds. Finally, a property-restricted diversity set called the “in-between library” was established to identify ligand-efficient compounds of molecular size between those typically found in fragment and high-throughput screening libraries. It was screened at fivefold higher concentrations than the main library to facilitate identification of less potent yet ligand-efficient compounds. Taken together, this work underscores the value of generating multiple purpose-focused, diversity-based library subsets that are designed using computational approaches coupled with internal screening data analyses to accelerate the lead discovery process.

Publisher

Elsevier BV

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3