Characterizing Human Ion Channels in Induced Pluripotent Stem Cell–Derived Neurons

Author:

Haythornthwaite Alison1,Stoelzle Sonja1,Hasler Alexander2,Kiss Andrea2,Mosbacher Johannes23,George Michael1,Brüggemann Andrea1,Fertig Niels1

Affiliation:

1. Nanion Technologies GmbH, Munich, Germany

2. Actelion Pharmaceuticals Ltd, Switzerland

3. Neuroscience Research, F. Hoffmann-La Roche AG, Basel, Switzerland

Abstract

Neurons derived from human-induced pluripotent stem cells were characterized using manual and automated patch-clamp recordings. These cells expressed voltage-gated Na+ (Nav), Ca2+ (Cav), and K+ (Kv) channels as expected from excitable cells. The Nav current was TTX sensitive, IC50 = 12 ± 6 nM ( n = 5). About 50% of the Cav current was blocked by 10 µM of the L-type channel blocker nifedipine. Two populations of the Kv channel were present in different proportions: an inactivating (A-type) and a noninactivating type. The A-type current was sensitive to 4-AP and TEA (IC50 = 163 ± 93 µM; n = 3). Application of γ-aminobutyric acid (GABA) activated a current sensitive to the GABAA receptor antagonist bicuculline, IC50 = 632 ± 149 nM ( n = 5). In both devices, comparable action potentials were generated in the current clamp. With unbiased, automated patch clamp, about 40% of the cells expressed Nav currents, whereas visual guidance in manual patch clamp provided almost a 100% success rate of patching “excitable cells.” These results show high potential for pluripotent stem cell–derived neurons as a useful model for drug discovery, in combination with automated patch-clamp recordings for high-throughput and high-quality drug assessments at human neuronal ion channels in their correct cellular background.

Publisher

Elsevier BV

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3