The Use of Strictly Standardized Mean Difference for Hit Selection in Primary RNA Interference High-Throughput Screening Experiments

Author:

Zhang Xiaohua Douglas1,Ferrer Marc2,Espeseth Amy S.3,Marine Shane Douglas2,Stec Erica M.2,Crackower Michael A.4,Holder Daniel J.5,Heyse Joseph F.6,Strulovici Berta2

Affiliation:

1. Biometrics Research, Merck Research Laboratories, West Point, Pennsylvania, xiaohua_zhang @merck.com

2. Automated Biotechnology, Merck Research Laboratories, West Point, Pennsylvania

3. Molecular and Cellular Technology, Merck Research Laboratories, West Point, Pennsylvania

4. Biochemistry and Molecular Biology, Merck Frosst, Kirkland, Quebec, Canada

5. Biometrics Research, Merck Research Laboratories, West Point, Pennsylvania

6. BARDS, Merck Research Laboratories, West Point, Pennsylvania

Abstract

RNA interference (RNAi) high-throughput screening (HTS) has been hailed as the 2nd genomics wave following the 1st genomics wave of gene expression microarrays and single-nucleotide polymorphism discovery platforms. Following an RNAi HTS, the authors are interested in identifying short interfering RNA (siRNA) hits with large inhibition/activation effects. For hit selection, the z-score method and its variants are commonly used in primary RNAi HTS experiments. Recently, strictly standardized mean difference ( SSMD) has been proposed to measure the siRNA effect represented by the magnitude of difference between an siRNA and a negative reference group. The links between SSMD and d+-probability offer a clear interpretation of siRNA effects from a probability perspective. Hence, SSMD can be used as a ranking metric for hit selection. In this article, the authors investigated both the SSMD-based testing process and the use of SSMD as a ranking metric for hit selection in 2 primary siRNA HTS experiments. The analysis results showed that, as a ranking metric, SSMD was more stable and reliable than percentage inhibition and led to more robust hit selection results. Using the SSMD -based testing method, the false-negative rate can more readily be obtained. More important, the use of the SSMD-based method can result in a reduction in both the false-negative and false-positive rates. The applications presented in this article demonstrate that the SSMD method addresses scientific questions and fills scientific needs better than both percentage inhibition and the commonly used z-score method for hit selection. ( Journal of Biomolecular Screening 2007:497-509)

Publisher

Elsevier BV

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3