A Novel Automated High-Content Analysis Workflow Capturing Cell Population Dynamics from Induced Pluripotent Stem Cell Live Imaging Data

Author:

Kerz Maximilian1234,Folarin Amos234,Meleckyte Ruta1,Watt Fiona M.1,Dobson Richard J.234,Danovi Davide1

Affiliation:

1. Centre for Stem Cells and Regenerative Medicine, King’s College London, Tower Wing, Guy’s Hospital, London, UK

2. Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK

3. National Institute for Health Research, Biomedical Research Centre for Mental Health, and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, UK

4. Farr Institute of Health Informatics Research, UCL Institute of Health Informatics, University College London, London, UK

Abstract

Most image analysis pipelines rely on multiple channels per image with subcellular reference points for cell segmentation. Single-channel phase-contrast images are often problematic, especially for cells with unfavorable morphology, such as induced pluripotent stem cells (iPSCs). Live imaging poses a further challenge, because of the introduction of the dimension of time. Evaluations cannot be easily integrated with other biological data sets including analysis of endpoint images. Here, we present a workflow that incorporates a novel CellProfiler-based image analysis pipeline enabling segmentation of single-channel images with a robust R-based software solution to reduce the dimension of time to a single data point. These two packages combined allow robust segmentation of iPSCs solely on phase-contrast single-channel images and enable live imaging data to be easily integrated to endpoint data sets while retaining the dynamics of cellular responses. The described workflow facilitates characterization of the response of live-imaged iPSCs to external stimuli and definition of cell line–specific, phenotypic signatures. We present an efficient tool set for automated high-content analysis suitable for cells with challenging morphology. This approach has potentially widespread applications for human pluripotent stem cells and other cell types.

Publisher

Elsevier BV

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3