Are the Adivasi Rice Growers of 
Sub-Himalayan North Bengal 
Efficient Enough? Role of Machine Learning in Farm Business 
After COVID-19

Author:

Nandy Anirban1ORCID,Nandi Poulomi Chaki2,Chatterjee Mousumi3,Mahato Shankhadeep3,Bandyopadhyay Souradipt3

Affiliation:

1. Siliguri Institute of Technology, West Bengal, India

2. Live Life Happily Organization, Siliguri, West Bengal, India

3. Visva-Bharati University, Santiniketan, West Bengal, India

Abstract

The COVID-19 pandemic and the consequent lockdown have disrupted the farming communities across the planet; however, the indigenous communities such as the Adivasi people of tea garden areas in India have been hit hard. It becomes more crucial when we talk about marginalized communities. In India, the Adivasi tribe found in the sub-Himalayan North Bengal cultivates folk rice that needs immediate energy-efficient measures as the production has been increased after receiving the geographical indication tag. Energy efficiency estimation often applied a two-step data envelopment analysis model in agricultural production. However, in most of the previous articles, the applications discussed the factors affecting energy use efficiency with rare studies on efficiency prediction. In this article, first, data envelopment analysis was used to estimate the energy efficiency of rice growers, and in the second stage, extreme gradient boosting, a state-of-the-art machine learning algorithm, was employed to derive the key leading efficiency determinants. The findings revealed wide variation among efficient and inefficient rice growers in the first stage and derived the most salient factors predicting energy efficiency in the second stage. The optimal use of energy inputs combined with effective education, better credit delivery mechanism, arable land availability and years of farming experience provided improvement for the future energy use efficiency of the Adivasi farmers. Further, the novel application of extreme gradient boosting as a machine learning algorithm in energy efficiency evaluation suggests decision-making solutions with a prediction accuracy of 80.91%. Moreover, this study aims to assist future researchers in examining and predicting the key leading determinants to affect energy utilization.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3