Numerical simulation of cell squeezing through a micropore by the immersed boundary method

Author:

Tan Jifu1ORCID,Sohrabi Salman2,He Ran2,Liu Yaling23

Affiliation:

1. Department of Mechanical Engineering, Northern Illinois University, DeKalb, IL, USA

2. Department of Mechanical Engineering, Lehigh University, Bethlehem, PA, USA

3. Department of Bioengineering, Lehigh University, Bethlehem, PA, USA

Abstract

The deformability of cells has been used as a biomarker to detect circulating tumor cells from patient blood sample using microfluidic devices with microscale pores. Successful separations of circulating tumor cells from a blood sample require careful design of the micropore size and applied pressure. This paper presented a parametric study of cell squeezing through micropores with different size and pressure. Different membrane compressibility modulus was used to characterize the deformability of varying cancer cells. Nucleus effect was also considered. It shows that the cell translocation time through the micropore increases with cell membrane compressibility modulus and nucleus stiffness. Particularly, it increases exponentially as the micropore diameter or pressure decreases. The simulation results such as the cell squeezing shape and translocation time agree well with experimental observations. The simulation results suggest that special care should be taken in applying Laplace–Young equation to microfluidic design due to the nonuniform stress distribution and membrane bending resistance.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3