A hybrid robot for friction stir welding

Author:

Li Qinchuan1,Wu Weifeng1,Xiang Ji’nan1,Li Hongjun1,Wu Chuanyu1

Affiliation:

1. Faculty of Mechanical Engineering & Automation, Mechatronic Institute, Zhejiang Sci-Tech University, Zhejiang, PR China

Abstract

Friction stir welding (FSW) has been widely applied in a number of fields instead of traditional fusion welding. However, a huge axial downward force is required to maintain a steady welding process. Moreover, the task of welding along a curved surface requires an orientation ability, which traditional FSW machines cannot provide. To overcome this limitation, we propose a 5-axis hybrid robot for FSW. This hybrid robot comprises a 2-SPR-RPS parallel mechanism (with one translational degree of freedom and two rotational degrees of freedom) and two gantries. First, mobility of the parallel mechanism in the initial and general configuration is analyzed using screw theory and continuous rotational axes are identified. Second, forward and inverse position solutions to the hybrid robot are studied, and the Jacobian matrix of the parallel mechanism is obtained. By analyzing the motion/force transmissibility, the architectural parameters of the parallel mechanism are optimized. Finally, the reachable workspace of the end effector is obtained considering the constraints of actuation links, joint angles, and singular configuration.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of path planning of welding robot based on spline curve;Journal of Mechanical Engineering and Sciences;2024-03-30

2. Development of a novel nonrigid support friction stir welding repair robot for aluminum alloy train;Industrial Robot: the international journal of robotics research and application;2024-03-18

3. Path Planning for the Gantry Welding Robot System Based on Improved RRT*;Robotics and Computer-Integrated Manufacturing;2024-02

4. Robotic milling stability optimization based on robot functional redundancy;Industrial Robot: the international journal of robotics research and application;2023-09-20

5. Design of a 2RRU-RRS Parallel Kinematic Mechanism for an Inner-Cavity Machining Hybrid Robot;Journal of Mechanisms and Robotics;2023-06-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3