A novel concatenation method for generating optimal robotic assembly sequences

Author:

Bahubalendruni MVA Raju1,Biswal Bibhuti Bhusan1

Affiliation:

1. Department of Industrial Design, National Institute of Technology - Rourkela, India

Abstract

Selection of optimized assembly sequence is significantly essential to achieve cost-effective manufacturing process. This paper presents a novel efficient methodology to generate cost-effective feasible robotic assembly sequences though concatenation of parts. Part concatenation process will be followed with liaison predicate test and feasibility predicate test. A unique method called bounding box method is described to test the feasibility predicate efficiently in the computer-aided design environment. Assembly indexing technique is proposed to filter the redundant assembly subsets with high energy in order to minimize the computational time. The cost of collision free assembling operation is considered by the weight and distance traveled by the part in the assembly environment to join with the mating part. The method is successful in finding feasible optimal assembly sequence without ignoring any possible assembly sequence and found to be efficient in solving computer-aided assembly sequence generation. The correctness of the methodology is illustrated with an example.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A feature and optimized RRT algorithm-based assembly path planning method of complex products;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-11-03

2. Optimal assembly sequence planning with tool uncertainties;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2023-07-29

3. Assembly Sequence Validation with Feasibility Testing for Augmented Reality Assisted Assembly Visualization;Processes;2023-07-13

4. Optimal Assembly Sequence Planning with Single-Stage Multiple-Component Feasibility: Industry 4.0 Perspective;Advances in Modelling and Optimization of Manufacturing and Industrial Systems;2023

5. Design of Advanced Human–Robot Collaborative Cells for Personalized Human–Robot Collaborations;Applied Sciences;2022-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3