Calibration of a micro-electro mechanical system-based accelerometer for vehicle navigation

Author:

Ghaffari A1,Khodayari A2ORCID,Nosoudi S3,Arefnezhad S1

Affiliation:

1. Mechanical Engineering Department, K. N. Toosi University of Technology, Tehran, Iran

2. Mechanical Engineering Department, Pardis Branch, Islamic Azad University, Tehran, Iran

3. Advanced Vehicle Control System Laboratory, Tehran, Iran

Abstract

Micro-electro mechanical system-based inertial sensors have broad applications in moving objects including in vehicles for navigation purposes. The low-cost micro-electro mechanical system sensors are normally subject to high dynamic errors such as linear or nonlinear bias, misalignment errors and random noises. In the class of low cost sensors, keeping the accuracy at a reasonable range has always been challenging for engineers. In this paper, a novel method for calibrating low-cost micro-electro mechanical system accelerometers is presented based on soft computing approaches. The method consists of two steps. In the first step, a preliminary model for error sources is presented based on fuzzy subtractive clustering algorithm. This model is then improved using adaptive neuro-fuzzy systems. A Kalman filter is also used to calculate the vehicle velocity and its position based on calibrated measured acceleration. The performance of the presented approach has been validated in the simulated and real experimental driving scenarios. The results show that this method can improve the accuracy of the accelerometer output, measured velocity and position of the vehicle by 79.11%, 97.63% and 99.28%, in the experimental test, respectively. The presented procedure can be used in collision avoidance and emergency brake assist systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3