Mechanical performance of additively manufactured uniform and graded porous structures based on topology-optimized unit cells

Author:

Teimouri Mohsen1,Asgari Masoud1ORCID

Affiliation:

1. Research Laboratory of Passive Safety Systems, Faculty of Mechanical Engineering, K. N, Toosi University of Technology, Tehran, Iran

Abstract

A topology optimization (TO) method is used to develop new and efficient unit cells to be used in additively manufactured porous lattice structures. Two types of unit cells including solid and thin-walled shell-type ones are introduced for generating the desired regular and functionally graded (FG) lattice structures. To evaluate structural stiffness and crushing behavior of the proposed lattice structures, their mechanical properties, and energy absorption parameters have been calculated through implementing finite element (FE) simulations on them. To validate the simulations, two samples were fabricated by a stereolithography (SLA) machine. Besides, the effects of geometrical parameters and optimizing scheme of the unit cells on the mechanical properties of the proposed structures are studied. Consequently, energy absorption parameters have been calculated and compared for both the solid and thin-walled lattice structures to evaluate their ability in energy absorption. It was found in general that for the solid lattice structures, the mechanical properties, and the crushing parameters are directly affected by porosity though in shell-type ones superior mechanical properties could be achieved even for a smaller proportion of material usage.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3