Two-dimensional pressure field and backflow in the annular skirt of vortex gripper

Author:

Zhao Jianghong1,Li Xin1ORCID

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, P. R. China

Abstract

The vortex gripper is a kind of pneumatic noncontact gripper that does not produce a magnetic field and heat. It can grip a workpiece without physical contact, which avoids any unintentional damage such as mechanical scratches, local stress concentrations, frictional static electricity, and surface stains. This study focused on the two-dimensional pressure distribution field on a workpiece surface under the vortex gripper. Theoretical, experimental, and computational fluid dynamics results were combined to study the backflow phenomenon in the annular skirt, which can decrease the gripper’s suction force after the maximum value is reached. First, the pressure distribution in the annular skirt was theoretically modeled. A comparison with the experimental results showed that increasing the gap height between the gripper and workpiece generates a circumferentially asymmetrical flow field in the skirt. Based on this, it was hypothesized that an airflow in the circumferential direction may exist. The experimental data and simulation results were analyzed under large gap height conditions to observe the backflow in detail and it was found that an uneven pressure distribution with positive and negative pressure regions generated by the uneven flow is the root cause of the backflow. Finally, the effect of the backflow on the flow field in two different flow regions (in the annular skirt and inside the vortex chamber) was analyzed and the reason why the suction force of the vortex gripper has a maximum value was determined.

Funder

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3