A detachable design method of large-sized structure for heavy duty machine tool based on joint surface dynamics characteristic analysis

Author:

Cheng Qiang12,Qi Baobao1,Liu Zhifeng1,Zhang Guojun3,Zhang Caixia1,Chen Huaxiong4

Affiliation:

1. Institute of Advanced Manufacturing and Intelligent Technology, Beijing University of Technology, Beijing, China

2. Beijing Key Laboratory of Advanced Manufacturing Technology, Beijing University of Technology, Beijing, China

3. State Key Lab of Digital Manufacturing Equipment & Technology, Huazhong University of Science and Technology, Wuhan, China

4. Center of Science and Technology Evaluation, Ministry of Science and Technology, Beijing, China 100081

Abstract

Heavy duty and ultra-heavy duty machine tools are used to manufacture large parts or super large parts in aerospace, ship, transportation, and energy industries. The weight of a structural part of ultra-heavy duty machine tools will reach more than 100 tons, because of which both manufacturing and transportation become very difficult. In this paper, a detachable design method for large-sized structures of heavy duty machine tools is presented. The proposed method aims to make large-sized structure into several detachable sections that can be bolted together in order to be casted and transported and remanufactured more easily. To analyze the influence of the joint surface, a three-dimensional fractal contact model based on the influence of domain expansion factor is used to identify stiffness and damping of the joint surface. On the basis of the analysis of the dependence of contact stiffness and damping of joint surface on dynamic characteristics of structural part, a detachable optimization model of a super span beam is established, and the particle swarm optimization algorithm is adopted to carry out the optimization. After that, the dynamic characteristics of the optimized design is analyzed and verified by finite element analysis. Based on the simulated verification, a detachable beam of heavy duty gantry machine was designed by the proposed method and verified by the field test. The illustration example shows that the large span beam can be detached into three sections that can be bolted together by high strength bolts, and it also has satisfied performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Modeling of Tie-bolt Rotors via Fractal Contact Theory and Virtual Material Method;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2022-03-04

2. Positioning accuracy degradation and lifetime prediction of the ball screw considering time-varying working conditions and feed modes;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2020-11-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3