Improving micro-hardness of stainless steel through powder-mixed electrical discharge machining

Author:

Zain Zakaria Mohd1,Ndaliman Mohammed Baba12,Khan Ahsan Ali1,Ali Mohammad Yeakub1

Affiliation:

1. Department of Manufacturing and Materials Engineering, Kulliyyah of Engineering International Islamic University Malaysia, Kuala Lumpur, Malaysia

2. Department of Mechanical Engineering, Federal University of Technology, Minna, Nigeria

Abstract

Powder-mixed electrical discharge machining (PMEDM) is the technique of using dielectric fluid mixed with various types of powders to improve the machined surface output. This process is fast gaining prominence in electrical discharge machining (EDM) industry. The objective of this investigation is to determine the ability of tantalum carbide (TaC) powder-mixed dielectric fluid to enhance the surface properties of stainless steel material during EDM. The properties investigated are the micro-hardness and corrosion characteristics of the EDMed surface. Machining was conducted with 25.0 g/L concentration of TaC powder in kerosene dielectric fluid. The machining variables used were the peak current, pulse on time and the pulse off time. The effects of these variables on the micro-hardness of the EDMed surface were determined. Corrosion tests were also conducted on the samples that exhibited higher hardness. Results showed that the EDMed surface was alloyed with elements from the TaC powder. The highest micro-hardness obtained with PMEDM is about 1,200 Hv. This is about 1.5 times that obtained without TaC powder in the dielectric fluid. The loss in weight during corrosion test was found to be 0.056 µg/min for the PMEDM which was much lower than the lowest value of 10.56 µg/min obtained for the EDM without powder dielectric fluid.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3