Application of FRF with SISO and MISO model for accelerometer-based in-cylinder pressure reconstruction on a 9-L diesel engine

Author:

Jia Libin1,Naber Jeffrey1,Blough Jason1

Affiliation:

1. Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA

Abstract

Engine control with feedback from engine combustion process diagnostics can help improve fuel efficiency and assist in meeting stricter emission regulations. The standard is to use in-cylinder pressure measurements with analysis including rate of heat release. The measurement is usually obtained with intrusive sensors that require a special mounting process and engine structure modification. The potential of the low-cost non-intrusive accelerometer as an alternative means to reconstruct the in-cylinder pressure has been demonstrated by previous investigations. In this work, start of injection (SOI) sweep test conditions at varied speed spanning both low load and high load were conducted on an inline 6-cylinder, 9 L diesel engine. The relationship between the in-cylinder pressure and the accelerometer signal was quantified with frequency response function (FRF). The robustness of the obtained FRF was evaluated by applying the single-test-based FRF to reconstruct the in-cylinder pressures for other test conditions. Two models, single-input single-output (SISO) and multiple-input single-output (MISO), were investigated and compared where the accelerometer signal was taken as the input and in-cylinder pressure as the output. The optimal channel used to acquire the input signal in the SISO model was selected on the basis of coherence analysis. Results show that the MISO model assisted by principal component analysis (PCA) and offset-compensation processes can result in better in-cylinder pressure estimation than the SISO model for conditions with 2200 rpm engine speed. With the purpose of minimizing the cost for accelerometer employment, the minimum number of inputs used to reconstruct the in-cylinder pressure in the MISO model was pursued. Thresholds were set based on three estimated in-cylinder pressure parameters to select the qualified input channels and two input channels were finally determined. Results showed that the two-input single-output FRF model coupled with the PCA and offset-compensation processes improves the FRF’s robustness for the in-cylinder pressure estimation in comparison to the SISO FRF model based on all the tests conducted in this paper.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference10 articles.

1. Connolly FT, Yagle AE. Modeling and identification of the combustion pressure process in internal combustion engines using engine speed fluctuations 1992; vol. 44, Anaheim, CA: American Society of Mechanical Engineers, Dynamic Systems and Control Division, pp. 191–206.

2. Signal Processing Parameters for Estimation of the Diesel Engine Combustion Signature

3. Pulse waveform recovery in a reverberant condition

4. RECONSTRUCTION OF DIESEL ENGINE CYLINDER PRESSURE USING A TIME DOMAIN SMOOTHING TECHNIQUE

5. Cylinder pressure reconstruction based on complex radial basis function networks from vibration and speed signals

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3