A novel identification approach for shearer running status through integration of rough sets and improved wavelet neural network

Author:

Si Lei12,Wang Zhongbin1,Liu Xinhua1

Affiliation:

1. School of Mechatronic Engineering, China University of Mining & Technology, Xuzhou, China

2. School of Information and Electrical Engineering, China University of Mining & Technology, Xuzhou, China

Abstract

In order to accurately and conveniently identify the shearer running status, a novel approach based on the integration of rough sets (RS) and improved wavelet neural network (WNN) was proposed. The decision table of RS was discretized through genetic algorithm and the attribution reduction was realized by MIBARK algorithm to simply the samples of WNN. Furthermore, an improved particle swarm optimization algorithm was proposed to optimize the parameters of WNN and the flowchart of proposed approach was designed. Then, a simulation example was provided and some comparisons with other methods were carried out. The simulation results indicated that the proposed approach was feasible and outperforming others. Finally, an industrial application example of mining automation production was demonstrated to verify the effect of proposed system.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel recognition method of shearer cutting status based on SDP image and MCK-DCNN;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-06-29

2. Research on the evaluation method of the operation status of digital workshop in discrete manufacturing industry;Production Engineering;2022-08-03

3. Airport Passenger Flow Forecast Based on the Wavelet Neural Network Model;Proceedings of the 2018 2nd International Conference on Deep Learning Technologies - ICDLT '18;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3